首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59622篇
  免费   930篇
  国内免费   422篇
测绘学   1277篇
大气科学   3980篇
地球物理   11661篇
地质学   21357篇
海洋学   5664篇
天文学   13670篇
综合类   108篇
自然地理   3257篇
  2022年   386篇
  2021年   711篇
  2020年   714篇
  2019年   810篇
  2018年   1690篇
  2017年   1533篇
  2016年   1805篇
  2015年   911篇
  2014年   1644篇
  2013年   3127篇
  2012年   1883篇
  2011年   2520篇
  2010年   2316篇
  2009年   2975篇
  2008年   2499篇
  2007年   2720篇
  2006年   2456篇
  2005年   1766篇
  2004年   1705篇
  2003年   1669篇
  2002年   1639篇
  2001年   1469篇
  2000年   1303篇
  1999年   1080篇
  1998年   1076篇
  1997年   1085篇
  1996年   794篇
  1995年   844篇
  1994年   791篇
  1993年   696篇
  1992年   670篇
  1991年   643篇
  1990年   648篇
  1989年   645篇
  1988年   583篇
  1987年   695篇
  1986年   622篇
  1985年   769篇
  1984年   806篇
  1983年   749篇
  1982年   678篇
  1981年   709篇
  1980年   608篇
  1979年   596篇
  1978年   574篇
  1977年   547篇
  1976年   494篇
  1975年   496篇
  1974年   483篇
  1973年   525篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
OSIRIS (OH-Suppressing Infra-Red Integral-field Spectrograph) is a new facility instrument for the Keck Observatory. After seeing first light in February 2005, OSIRIS is currently undergoing commissioning. OSIRIS provides the capability of performing three-dimensional spectroscopy in the near-infrared z, J, H, and K bands at the resolution limit of the Keck II telescope, which is equipped with adaptive optics and a laser guide star. The science case for OSIRIS is summarized, and the instrument and associated data reduction software are described.  相似文献   
62.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
63.
64.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
65.
66.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   
67.
Abstract— Characterization of the microstructural features of the metal of the Santa Catharina meteorite was performed using a variety of electron optical techniques. Sample USNM#6293 is chemically homogeneous on the micron scale and has a Ni content of 28.2 wt.%. Its microstructure is similar to that of the Twin City ataxite and contains clear taenite II, i.e., fcc taenite with domains of tetrataenite, < 10 nm in size. Sample USNM#3043 is a more typical Santa Catharina specimen with dark and light regions as observed with the light optical microscope. The dark regions are inhomogeneous and contain 45–50 wt.% Ni and 7–12 wt.% O. The light regions are homogeneous and contain 35 wt.% Ni and no detectable oxygen. The microstructure is that of cloudy zone, i.e., islands of tetrataenite, ~20 nm in size, in a honeycomb matrix. The honeycomb phase contains Ni rich oxide in the dark regions and contains metal, fcc taenite, in the light regions. The original metal structure of USNM#3043 is cloudy zone which formed during cooling into the low temperature miscibility gap of the Fe-Ni phase diagram. The dark regions were developed from the metal by selective corrosion of the honeycomb structure, transforming it into Ni containing oxides, possibly non-stoichiometric Fe2NiO4 while retaining the tetrataenite islands. Using the results of this study, many of the existing discrepancies concerning the microstructure of Santa Catharina can be explained.  相似文献   
68.
Laser-induced plasmas in various gas mixtures were used to simulate lightning in other planetary atmospheres. This method of simulation has the advantage of producing short-duration, high-temperature plasmas free from electrode contamination. The laser-induced plasma discharges in air are shown to accurately simulate terrestrial lightning and can be expected to simulate lightning spectra in other planetary atmospheres. Spectra from 240 to 880 nm are presented for simulated lightning in the atmospheres of Venus, Earth, Jupiter, and Titan. The spectra of lightning on the other giant planets are expected to be similar to that of Jupiter because the atmospheres of these planets are composed mainly of hydrogen and helium. The spectra of Venus and Titan show substantial amounts of radiation due to the presence of carbon atoms and ions and show CN Violet radiation. Although small amounts of CH4 and NH3 are present in the Jovian atmosphere, only emission from hydrogen and helium is observed. Most differences in the spectra can be understood in terms of the elemental ratios of the gas mixtures. Consequently, observations of the spectra of lightning on other planets should provide in situ estimates of the atmospheric and aerosol composition in the cloud layers in which lightning is occuring. In particular, the detection of inert gases such as helium should be possible and the relative abundance of these gases compared to major constituents might be determined.  相似文献   
69.
Observations of the brightness, color, and polarization of the fuor V1057 Cyg over more than 30 years are presented and briefly discussed. Variability of the linear polarization was found.  相似文献   
70.
An elastoplastic model for sands is presented in this paper, which can describe stress–strain behaviour dependent on mean effective stress level and void ratio. The main features of the proposed model are: (a) a new state parameter, which is dependent on the initial void ratio and initial mean stress, is proposed and applied to the yield function in order to predict the plastic deformation for very loose sands; and (b) another new state parameter, which is used to determine the peak strength and describe the critical state behaviour of sands during shearing, is proposed in order to predict simply negative/positive dilatancy and the hardening/softening behaviour of medium or dense sands. In addition, the proposed model can also predict the stress–strain behaviour of sands under three-dimensional stress conditions by using a transformed stress tensor instead of ordinary stress tensor. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号